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Abstract 
Gas turbines are a major contributor to world power generation with applications ranging 

from electricity production to aircrafts propulsion. Their efficiency is subject to continuous 
research. A gas turbine's overall efficiency is directly proportional to flow inlet temperature. 
Various methods are implemented to protect hot gas path components from mainstream flow 
well above their melting temperature, namely, heat resistant coatings, internal cooling and film 
cooling. The latter is the subject of this work. A 3-D Computational Fluid Dynamics (CFD) model 
is solved using ANSYS CFX software and compared to experimental measurements of film cooled 
transonic vane cascade operating at a Mach number of 0.89; the experimental data used for 
validation is provided by Heat and Power Technology Department of the Royal Institute of 
Technology (Kungliga Tekniska Högskolan, KTH) of Stockholm, Sweden. 

A new approach was used to model the film cooling holes, omitting the need to model both 
the coolant plenum and cooling tubes, resulting in 180% reduction in grid size and attributed 
computational cost interpreted in 300% saving in computation time. The new approach was 
validated on a basic flow problem (flat plate film cooling) and was found to give good agreement 
with experimental measurements of velocity and temperature at a blowing ratio (BR) of 1 and 2; 
the experimental data for the flat plate was provided by NASA’s Glenn Research Center. The 
numerical simulation of the cooled vane cascade was compared to experimental measurements 
for different cooling configurations and different BRs. a) One row on pressure side at BR = 0.8, 
0.96 and 2.5. b) Two rows on suction side (location 1) at BR = 0.8, 1.4 and 2.5. c) Two rows on 
suction side (location 2) at BR = 0.8. And d) Showerhead cooled vane at BR ranges between 1.98 
and 5.84. The coolant was applied at the same temperature as the mainstream, to match 
experimental conditions. A good agreement with the experimental measurements was obtained 
for exit flow angle, vorticity downstream of the vane, pressure coefficients and aerodynamic 
loss. 

The proposed approach of coolant injection modeling is shown to yield reliable results, 
within the uncertainty of the measurements in most cases. Along with lower computational cost 
compared to conventional film cooling modeling approach, the new approach is recommended 
for further analysis for aero and thermal vane cascade flows.  
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Nomenclature 
Symbols 

c   Chord length [mm] 

Cp  Total pressure coefficient [-] 

𝐶𝜇  Closure coefficient 

D   Diameter [mm] 

h   Heat transfer coefficient [W/m
2
K] 

H  enthalpy 

k  Turbulence kinetic energy [J/kg] 

K  von Karman’s constant (K = 0.41) 

L  Length 

𝐿𝑖  Leonard stress tensor 

ṁ  Mass flow rate [kg/s] 

M   Mach number [-] 

P   Pressure [kPa] 

𝑃𝑘  Rate of turbulent kinetic energy production 

q’’  Heat transfer rate [W/m
2
] 

r   Radius [mm] 

Re   Reynolds number [-] 

s   Pitch [mm] 

𝑆𝑖𝑗   Mean strain-rate tensor 

T  Temperature [K] 

𝑡𝑖𝑗  Viscous stress tensor 

u  Velocity in x-direction 

U   Velocity [m/s] 

𝑢𝜏  Shear (friction) velocity 

v  Velocity in y-direction 

w  Velocity in z-direction 
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x, y, z   Axial, pitchwise and spanwise distance respectively [mm] 

y  Cooling hole spacing 

Y   Mass flux ratio [%] 

y
+  

Normalized wall distance 

α   Tangential flow angle or yaw angle [º] 

𝛽  Turbulence model constant 

𝛽∗  Turbulence model constant 

𝛾2  Turbulence model constant 

𝛿𝑖𝑗  Kronecker delta (𝛿𝑖𝑗 = 1 if 𝑖 = 𝑗 and 𝛿𝑖𝑗 = 0 if 𝑖 ≠ 𝑗) 

𝜇𝑡  Eddy viscosity 

𝜎𝑘  Total stress tensor 

𝜔𝑥   Vorticity [1/s] 

Ø  Fuel equivalence ratio [-] 

Δ   Difference [-] 

ε  Rate of viscous dissipation [m
2
/s

2
] 

ζ   Energy loss coefficient [-] 

η  Film cooling effectiveness [-] 

θ  Normalized temperature [-] 

κ   Specific heat ratio [-] 

μ  Viscosity 

ρ   Density [kg/m
3
] 

ω  Specific turbulence energy dissipation [m
2
/s

2
] 

𝜞�  Diffusivity 

Subscripts 

1   Upstream Plane Position 

2   Downstream Plane Position 

3   Downstream Hub Static Pressure Tap Plane Position 

ave   Average 
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ax   Axial Reference 

c  Coolant 

exit   Exit 

f  Film cooling 

g  Coolant and mainstream mix 

hi  High 

hub   Hub 

in   Inlet 

iso   Isentropic 

low  Low 

m  Mainstream 

max   Maximum 

mid   Midspan 

nom  Nominal 

pr  Primary 

s   Static 

w  Wall 

i, j, k  x, y and z-components 

∞   Mainstream 

Abbreviations 

ASC   Annular Sector Cascade 

atm  Atmospheric 

BC  Boundary Condition 

BR   Blowing Ratio 

CAD   Computer Aided Design 

CFD   Computational Fluid Dynamics 

CV   Corner Vortex 

grad  Gradient 
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HPT   High Pressure Turbine 

HS   Horseshoe vortex 

KE  Kinetic Energy 

KTH   Kungliga Tekniska Högskolan, Royal Institute of Technology (in Swedish) 

LE   Leading Edge 

MS   Mainstream 

MW   Mega Watt 

NGV   Nozzle Guide Vane 

PS   Pressure Side 

PV   Passage Vortex 

SH  Showerhead 

SS   Suction Side 

SST  Shear Stress Transport 

TE   Trailing Edge  
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1 Introduction 

 

1. Introduction 

1.1.  Gas turbines 
With a contribution of 17% to the total global energy production (Saha 2012) and providing 

thrust for most modern aircrafts, At least 2504 jet engines were delivered in 20121,  gas 
turbines’ (Figure 1-1) efficiency improvement is an imperative demand for better use of critically 
limited fossil fuels supply. And lowering human footprint on an already burdened environmental 
system. Saha (2012) reports from Mamaev (2011) that a 1% increase in efficiency for a gas 
turbine of 50MW of power will yield fuel saving of 750 tons a year. In the strive for more 
efficient, less pollutant and more economical gas turbines, the understanding of efficiency 
limitations and sources of losses is a key parameter. 

 

 

Figure  1-1 Siemens SGT-700 gas turbine (courtesy of Siemens) 

An example of gas turbine performance map is shown in figure 1-2. And is shows clearly the 
dependency of efficiency on inlet gas temperature for a given flow rate. 

 

Figure  1-2 Turbine performance map (Boyce 2001) 
                                                           
1
 PwC Aerospace & defense report “2012 year in review and 2013 forecast” 
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2 Introduction 

 

While a high inlet temperature is appealing from a performance prospective, the life time of 

the turbine components is impacted negatively with application of such high temperatures. This 

applies specially to vanes. Vanes are the first component of a High Pressure Turbine (HPT), being 

closest to combustion chamber flue gas; it is the component subject to highest thermal loads, 

requiring intense cooling on its surface specifically. In a modern gas turbine, inlet temperature is 

in fact very high it is well above melting temperature of HPT components. Figure 1-3 shows the 

adiabatic flame temperature of various fuels plotted against equivalence ratio. 

 

Figure  1-3 Adiabatic flame temperature of various fuels (Law et al. 2006) 

The figure shows clearly flame temperatures of orders way higher than melting 

temperatures of turbine components as shown in Table 1-1 (components materials are adopted 

from Giampaolo (2006) and melting temperatures are from various materials manufacturers). 

The only way to do so while keeping these components intact is by providing protection to parts 

in direct contact with very high temperature mainstream flow. Various techniques are used 

commonly to do so, namely, the use of high temperature resisting coatings, internal cooling 

passages and film cooling, which is in the heart of this work. 
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Table  1-1 Melting temperature of various gas turbine components (Giampaolo 2006 and various materials 

manufacturers) 

Turbine 
Component 

Material Industrial Nomenclature Melting 
Temperature 

Stator 
Vanes 

Aluminum RR 58 660 °C 

 Titanium 6A1-4V 1660 °C 

 Stainless Steel A286, Chromally, Jethete M. 152, Greek 
Ascoloy, FV 535, FV500, 18/8, 

1500 °C 

 Precipitation 
Hardening Super 
Alloy  

Nimonic 75, Nimonic 105 1550 °C 

Rotor 
Blades 

Aluminum RR 58 660 °C 

 Titanium 6A1-4V, TBB 1660 °C 

 Stainless Steel A286, Greek Ascoloy, FV 535, FV520, 17-4 
Ph, 403 

1500 °C 

 Precipitation 
Hardening Super 
Alloy  

Inco 718, Nimonic 901 1550 °C 

Discs, 
Spool, 
Drum 

Titanium 6A1-4V, TBA (IMI 679), IMI 381 1660 °C 

 Steel 4340, FV 448, B5-F5, 9310 1427 °C 

 Stainless Steel 410, 17-4 Ph, Jethete M. 152, Chromally 
(FV 535) 

1500 °C 

 Precipitation 
Hardening Super 
Alloy  

Incoloy 901, Inco 718, Nimonic 901 1550 °C 

Shafts, 
Hubs 

Steel Hykoro, 4340, 9310, B5-F5 1427 °C 

 Precipitation 
Hardening Super 
Alloy  

Inco 718 1336 °C 

 

Before we incur to the film cooling injection into vane cascade, an inevitable introduction to 

the complex flow phenomena of vane cascades must be made, and that is what the next section 

will discuss. 
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4 Introduction 

 

1.2.  Flow in vane cascades 
Flow losses in a turbine stage are contributed to three main sources: 

a) Profile loss: is the loss generated at the vane boundary layer and away from endwalls 
(hub and casing). 

b) Leakage loss: tip leakage for rotors. 
c) Endwall loss (secondary loss): is formed near end walls and is linked to profile loss. 

Each of the three is accounted for one third of the total aerodynamic loss (Denton 1993) and 
the secondary losses in some cases accounts solely for 50% of it (Sharma and Butler 1987). This 
work is concerned only with the secondary loss.  

One of the sources of complex flows in a turbine cascade is the horseshoe (HS) vortex. 
When the inlet flow reaches the stagnation point on a cylindrical shaped leading edge as  

Figure  1-4 is showing, a static pressure gradient occurs, with lower pressure existing near 
endwall causing a downward rotational motion and a separation into two arms (Eckerle 1985). 

  
       

 

 

Figure  1-4 a) Horseshow vortex formation around a cylinder (Eckerle 1985), b) Leading edge-Endwall 

separation (Mahmood et al. 2005) 

Very early attempts were made to fully understand the different flow phenomena occurring 

through the vane passage. In early seventies, aerodynamicists perceived that the secondary flow 

problem is in fact a boundary layer problem, meaning, a mere understanding of the flow up and 

downstream of the vanes is not nearly enough to interpret the performance of the vanes. Klein 

(1966) was pioneering in pointing out the leading edge role in generating cylinder body like flow 

pattern (Figure 1-5), he highlighted the horseshoe vortex calling it “stagnation point vortex”. 
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Figure  1-5 Flow in a cascade passage (Klein 1966) 

Blair (1974) reported increased heat transfer rate at the leading edge and attributed it to 

the distortion of the end wall boundary layer by leading edge vortex. It was not until 1980 when 

Langston (1980) published his work, with a new interpretation of the flow in cascade passage, 

that the author believes the very first near complete secondary flow model. 

 

Figure  1-6 Secondary flow formation in linear cascade (Langston 1980) 

He clearly stated that the pressure side horseshoe vortex leg gradually merges with the 

passage vortex, and the suction side leg remains attached to the suction side of the vane 

rotating in a counter direction to it (and at much smaller scale) forming what is called counter 

vortex (Figure 1-6). The work of Marchal and Sieverding (1977) disagrees with Langston’s model 

on one thing, his measurements at different locations along the vane passage showed the 

counter vortex at midspan rather than at the corner as suggested by Langston. 

A confirmation of Langston’s model was made by Moore and Smith (1984), who injected 

ethylene at both the suction and pressure legs of the horseshoe vortex, and by tracing it he 

located the pressure side leg at the center of the passage vortex, while the suction side’s was 

convicted around the passage vortex core.  
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6 Introduction 

 

This dispute over the counter vortex location is due to the fact that it rotates at different 

speeds in different experimental setups as it is relevant to the inlet flow profile and passage 

shape and length. 

A detailed explanation of the interaction and merge of the passage, suction and pressure 

side vortices was made by Sieverding and Bosche (1983) who used colored smoke to visualize 

flow evolution (Figure 1-7). 

 

 

Figure  1-7 Laminar flow evolution in low speed air flow as visualized by smoke (Sieverding and Bosche 1983) 

Their work resulted in a well-illustrated model of the flow, indicating two stream surfaces 

moving parallel to the end walls upstream of the vane SS1 and SS2. SS1 is bounded by the 

endwall boundary layer region while SS2 lies outside of the boundary layer, at the leading edges, 

both ends of the SS1 stream started to roll up rotating vertically at both ends of the passage, 

and as the flow moved further downstream, the vertical motion thickened, extending to the 

entire boundary layer and forming the passage vortex. The pressure side moved along with the 

passage vortex, while the suction side vortex started rotating around it, in a manner similar to 

what was previously described by Langston and Moore. 

Although small in magnitude, hence hard to visualize, the existence of the corner vortex was 

made clear be measuring the turning angle near the endwall downstream of a high loading 

vane. The work of Gregory-Smith and Graves (1983) shows behind any doubt the previously 

mentioned effect. 

Langston (2001) describes the motion of the counter vortex around the axis of the passage 

vortex to be similar to the rotation of a planet around its sun. Sharma and Butler’s (1987) 

measurements of the velocity, pressure and flow provided an evidence of this planet like 

rotational motion of the counter vortex. They were also able to prove the independence of the 

inlet flow profile from the overall turning of the flow at passage exit (Figure 1-8). 
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7 Introduction 

 

 

Figure  1-8 Secondary flow model (Sharma and Butler 1987) 

Another loss attributed to secondary flows is the loss of lift; Langston et al. (1977) was able 

to show the effect by measuring static pressure at pressure and suction sides of the vane at 

different spanwise locations (2.3, 12.15, 25 and 50 percent). While the pressure side was 

showing relatively two-dimensional behavior, the severity of the secondary flow effect on lift 

loss was evident on the suction side of the airfoil near the endwalls (Figure 1-9). 

 
Figure  1-9 Static pressure distribution on airfoil surface (Langston et al. 1977) 

Now with a thorough understanding of the formation and evolution of secondary flows, we 

can proceed to the next level of this work by illustrating how vane film cooling works. 
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1.3.  Film cooling 
Subjected to flue gas at temperatures higher than their melting temperatures, turbine 

components are vulnerable. Thus some means of protection is of necessity in order to keep 

them performing. Film cooling is a well-developed mean of cooling for turbines’ components. It 

is a method in which penetrative holes are drilled in the profile and endwalls of a turbine vane, 

and through these holes a bleed of cool air delivered from the compressor and through internal 

cooling passages is provided at their surfaces. 

1.3.1. Experimental investigation of film cooling in literature 

Figure 1-10 shows a cascade vane with cooling holes on its surface and Figure 1-11 is a 
section view of the vane, showing bleeding from internal cooling passages through cooling 
holes. 

 
Figure  1-10 Film cooled HPT (Hill and Peterson 1992) 

 

 

This helps in the protection of turbine components from exposure to hot mainstream by 

forming a layer of gas at much lower temperature (coolant temp. ≈ 800˚ C while mainstream 

temp could be as high as 1300˚ C (Hill and Peterson 1992)), reducing the convection from hot 

mainstream flow to the metal surface, as the heat transfer rate to walls in the case of film 

cooling absence is defined as: 

Figure  1-11 Film cooled HPT (Gritsch et al. 1998) 
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   =                 Eq. 1-1 

Where   is the heat transfer coefficient,    is the mainstream temperature and    is the 

wall temperature. As film cooling is applied, restating equation 1-1 requires a new definition of 

the driving temperature of the heat transfer. In fact the driving temperature now is neither the 

mainstream nor the coolant. Simply because, downstream of the cooling hole, rapid variation in 

the boundary layer temperature is expected, due to mixing of the two flows. Thus equation 1-1 

rather becomes 

    =�                 Eq. 1-2 

Where    is the temperature of the gas in direct contact with the wall. 

The application of the film cooling contribution in heat transfer reduction can be assessed from 

the percentage change in the heat transfer rate which is translated into: 

  = �
        

   = 1  �
         

        
       Eq. 1-3 

As    goes down (better film cooling performance) one expects    to become higher, 

interpreting increased thermal benefit of film cooling. 

A rather more common definition of the film cooling effectiveness in the literature is 

parameter η, where:  

η = 
   �  �

   �  �
         Eq. 1-4 

A higher η is an indicator of better film cooling performance, which is why one expects η to 

peak at the trailing edge of cooling hole and decreases downstream of it. The factors influencing 

η are stated in Table 1-2. 

Table  1-2 Factors affecting η (Thole and Bogard 2006) 

Coolant/Mainstream 
conditions 

Hole Geometry and configuration Airfoil Geometry 

Mass flux ratio Shape of hole Hole location              
- leading edge            
- main body                 
- blade tip                    
- endwall 

Momentum flux ratio Injection angle and compound angle of the 
coolant hole 

Mainstream turbulence Spacing between holes P/d Surface curvature 

Coolant density ratio Length of the hole, l/d Surface roughness 

Approach boundary layer Spacing between rows of holes and number of 
rows 

 

Mainstream Mach 
number 

 

Rotation 
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The injection of coolant into a mainstream flow is a compromise on more than one level. On 

one hand, implementing film cooling causes aerodynamic loss, but ideally the increase of the 

inlet temperature granted by it will make for that loss, resulting in a positive net effect on the 

cycle efficiency. A perfect film cooling design though will form total isolation of the turbine 

component surface while not mixing with the mainstream. On the other hand, the cold flow is 

bled from the compressor decreasing the mainstream flow rate; yet again the increase in the 

turbine inlet temperature represents an indemnity against that loss. 

 

Figure  1-12 Jet in a crossflow (Roshko and Fric 1994) 

Figure 1-12 is an illustration of different features associated with jet in crossflow. Scorer 

(1958) was one of the first to point out the formation of the counter rotating vortex. He 

associated this behavior to the rolling up of vorticity at the sides of the hole. While 

Andreopoulos and Rodi (1984), Sykes et al. (1986) and Fric (1990) agree with Scorer on how the 

counter rotating (kidney) vortex is formed. Sugiyama (1991) attributes it to the cross flow 

entrainment in the leeside of the jet.  

Fearn and Weston (1974) investigated vorticity in the trajectory of a jet and found that the 

initial strength of the vortex pair is proportional to the jet velocity and its diameter and 

independent of the crossflow speed. 

In their investigation of jet injection in crossflow Moussa et al. (1977) reported what they 

called negative vortex in the kidney-vortex and in an opposing direction it. They associated that 

so called “negative vortex” to the crossflow reaction to the “positive” kidney-vortex. It is worth 

noting that no one else in the literature points that negative vortex out. 

Sugiyama (1995) investigated the pressure coefficient (Cp) distribution around the jet hole 

and concluded that the leading edge of the jet is not a stagnation point (unlike that of a solid 

cylinder). He also found that the Cp at the trailing edge is typically lower than that for solid 

cylinder. 

As was previously mentioned, application of film cooling is promising to provide huge merit 

in turbine component thermal protection, its interaction with the secondary flows in the 
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mainstream is a cause of aerodynamic loss in the vane cascade. Extensive research was 

conducted on assessing that influence.  

Day et al. (1999) have investigated this influence on aerodynamic efficiency in a large- scale 

transonic cascade vane, they used a foreign gas as coolant to mimic the density ratio of coolant 

to mainstream in actual turbines, and air in other runs. They concluded that while the coolant 

application resulted in merely an increase in the wake width and limited drawback on the loss 

(9% increase), increasing the flow rate of the coolant (in the foreign gas run) actually yielded less 

overall aerodynamic loss. 

Nicklas and Kost (2001) and Nicklas (2001) conducted an experiment on a high pressure 

turbine nozzle guide vane (NGV) with cooling slot upstream of the vane and cooling holes on the 

endwall in the vane passage, they studied the interaction between the endwall flows and film 

cooling injection and concluded that film cooling resulted in a reduced endwall cross flow and 

consequently reduced passage vortex, the cooling slot placed in the saddle point region 

upstream of the vane increased the intensity of the horse show vortex driving the coolant away 

from the endwall and into the main flow region, they also noted rise in the turbulence intensity 

caused by the coolant injection. The effects of these flow phenomena resulted in a decrease in 

the pressure side heat transfer coefficient that was even lowered downstream. They suggested 

addition of cooling holes downstream of the vane passage to help boosting the heat transfer 

coefficient downstream. 

In actual turbine conditions, the film cooling injection is generally not steady and rather of 

pulsating nature, Lalizel et al. (2012) carried out experiment on film cooling flat plate to analyze 

the effect of injected coolant pulsation, and concluded that for low blowing ratio (BR = 0.65) 

pulsation led to lowered η while for high BR (1.25) this behavior reversed where pulsating was 

better than steady coolant flow. 

Tacina et al. (2003) investigated influence of mainstream turbulence intensity on film 

cooling effectiveness on a flat plate experimentally and found that increasing the turbulence 

intensity from 7 to 35% resulted in huge decrease in the film cooling effectiveness of 50%. 

The effect of film cooling in a low aspect ratio (h/C =0.5) vane was studied experimentally by 

Takeishi et al. (1990), who found that the secondary flows effect on heat transfer coefficient 

with no film cooling is more significant on the suction side than on the pressure side and also 

that the horseshoe vortex near the leading edge had a limiting effect on the film cooling 

effectiveness and even increased the heat transfer coefficient in that region. They also 

concluded that a 2-D heat transfer model was able to predict the heat transfer coefficient 

correctly except in the endwall regions. 

1.3.2. Numerical investigation of film cooling in literature 

Several numerical investigations of film cooling on flat plate and vanes are presented in the 

literature. Bohn and Kusterer (1999) Investegated numerically the mixing of film coolant 

injection from inclined holes in the vicinity of the leading edge, with one of the holes on suction 

and another on pressure side as the Figure 1-13 shows. Their work did show mild agreement 

with experimental measurements in terms of general vortices behavior on the lee side of the jet 

but with some unexplained intense flows though. 
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Figure  1-13 2-D view of numerical grid (Bohn and Kusterer 1999) 

The numerical representation of film cooling injection by modeling discrete holes is a 

computationally expensive process; this is mainly due to the fact that film cooling injection 

affects the flow on a scale way smaller than that of the mainstream, e.g. secondary flow 

formation. This means that in order to represent the cooling holes accurately and sufficiently, 

grid refinement near the holes will lead to increased number of numerical cells hence almost 

defeating the purpose of using numerical analysis approach. Garg and Rigby (1995) modeled 

three staggered rows of film cooling holes on a vane using 3-D model of the coolant plenum, 

cooling tubes and mainstream domain, in their work a comparison was made with a previous 

study where coolant was applied at the vane surface as BC and with experimental 

measurements, they concluded that the complete modelling of the plenum and coolant holes 

was able to match the experimental measurements more accurately. Hildebrandt et al. (2006) 

went further in that context, comparing modeled discerete holes to source terms 

implementation. With a similar conclusion on the merit of disceretized cooling plenum and 

tubes modeling and stating that the source term is more feasible in industrial day to day design 

tasks “but suffers not only from a lack of detailed flow information” they stated “but more 

important from an uncertainty in the specification of the correct boundary condition for the 

source terms.”. Their conclusion for the best practice in that regard is to first model the full 

discretized domain, i.e. with coolant plenum and tubes, and from it deduce the correct 

boundary conditions to be used for source terms for further analysis. But even then, they 

digress, the immediate vicinity of the cooling holes will not be captured accurately. 
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Andreini et al. (2013) used source terms to model the effusion cooling holes in a combustion 

chamber, effusion cooling is similar to film cooling in concept, with two difference, first is the 

smaller diameter of cooling holes and second is holes count across the surface. In their model, 

they used mass sink on the cold side of the plate, mass source on the hot side and heat sink to 

account for cooling as show in Figure 1-14. 

 
Figure  1-14 Source terms representation of efussion cooling holes (Andreini et al. 2013) 

They concluded that source terms approach did obtain satisfying results, however great deal of 

sensitivity to surface mesh element size near the source location, recommending that the size if 

the elements doesn’t exceed 50% of the hole diameter. They also found that the investigated 

approach works best with higher blowing ratios (BR = 5) and decreases as the blowing ratio 

decreases. 

In the endeavour for a reliable and feasible  numerical modeling of film cooling Heidmann 

and Hunter (2001) developed a voulmetric source term to work with coarse grids and was able 

to achieve fair agreement with experimental data for flat plate film cooling.  
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2. Research motivation and outline 
Considering their possible influence on gas turbines, vane cascade film cooling 

implementation has to be assessed properly in the design phase to avoid missing the point of 
having them in the first place. A proper design of film cooling will achieve a few goals, namely: 
sufficient protection of turbine components, limited influence on mainstream flow and 
providing uniform cooling avoiding formation of hotspots. The most common way to do so is by 
experimental measurements. 

Although expensive and time consuming, experiments are considered to be very reliable and 
accurate for different fluid dynamical measurements. An alternative to the experimental 
approach is numerical simulation. With advancement in the physical and mathematical models 
as well as computational capabilities of modern computers, Computational Fluid Dynamics (CFD) 
is becoming more robust and reliable in flow phenomena calculations making it more commonly 
used for different turbomachinery components design. However, the modeling of film cooling 
domain and its integration with the mainstream domain remains to be unfeasible for industrial 
applications for the time and computational expense it implements. This work is intended to 
assess a new technique for applying film cooling into vane cascade domain without 
reconstructing the numerical grid of the cascade. This will not only save huge gridding time, but 
will also bring the computational time needed to solve discrete film cooling holes down as the 
domain only sees the film cooling injection as boundary condition at the vane surface. 

In order to do so, the work is discretized into three main parts: 

A) Film cooling: a validation case of the proposed film cooling injection approach against 

experimental data of flat plate film cooling. 

B) Uncooled vane: simulation of uncooled vane cascade. The numerical simulation of the 

flow phenomena is compared to experimental measurements. 

C) Cooled vane: 9 runs at different cooling locations and under different flow conditions, 

i.e. blowing ratio, for the same vane geometry of the uncooled case. And are also 

compared to experimental measurements. 

 

 

 

 

 

 

 

 



www.manaraa.com

 

15 Research methodology 

 

3. Research methodology 

The present work is CFD simulation of the experimental measurements obtained at the 

testing facility at the Energy Technology Department in Royal Institute of Technology (Kungliga 

Tekniska Högskolan KTH, Stockholm, Sweden). Hence before proceeding to the numerical part 

of the analysis, the next section will briefly familiarize the reader with the experimental 

measurements facilities for both the vane cascade and flat plate film cooling. 

3.1.  Experimental benchmark 

3.1.1. Annular Sector Cascade (ASC) 

Figure 3-1 shows the testing facility of the annular sector cascade (ASC) and its components, 

the air flow is supplied by a twin screw compressor powered by a 1MW electric motor, capable 

of supplying a max flow rate of 4.7 kg/s at pressure 4 bars. The air exit temperature is 180 , a 

cooler is used to cool the air temperature down to 30 . The flow into the cascade is controlled 

by 2 inlet valves and two by-pass valves. The pressure at the outlet is drove by an exhaust fan. 

The first part of the test facility is a settling chamber (2) that contains a honeycomb and 5 

mesh screens in order to smoothen the flow. Then the flow starts to gradually go from a circular 

to annular section in a contraction part (3). Part (4) is where the turbulence grids (Figure 3-2) are 

placed to control the turbulence intensity of the mainstream flow. 

 

1) Inflow. 2) Settling chamber. 3) First radial contraction. 4) Turbulence grid. 5) Second radial contraction. 6) Test 

section with NGVs. 7) Outflow. 

Figure  3-1 ASC arrangement (Bartl 2010) 
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Figure  3-2 Fence (up) and parallel bar (down) turbulence grids (Saha 2012) 

A second contraction section (5) is used to ensure the flow is entering the NGVs test section 

with no radial or tangential components. The NGVs test section (6) cutaway is shown in 

Figure 3-3 and a cross section of it is shown in Figure 3-4 highlighting locations where 

measurements were made. It is a replica of an old 5 passages vane test section, as it was found 

that the use of 4 passages was sufficient to generate periodicity of flow (Bartl 2010) 

 

Figure  3-3 NGVs test section cutaway (El- Gabry et al. 2012) 
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Figure  3-4 NGVs test section (Saha et al. 2013) 

A cross-section view of the NGV can be seen in Figure 3-5 and the geometrical features of it 

are presented in Table 3-1. 

 

Figure  3-5 NGV cross-section (Saha et al. 2013) 
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Table  3-1 NGV geometric parameters (Saha 2012) 

Design Parameter Value 

True chord (c)  129.2 mm 

Axial chord at hub radius (cax,hub)  62.5 mm 

Pitch-to-chord ratio at midspan 0.826 

Hub radius at exit  615.3 mm 

Tip-to-hub ratio at exit  1.097 

Aspect ratio based on TE vane height (hTE/c)  0.463 

Average effective exit angle (αef)   16.05° 

LE radius  13.8 mm 

 

The denoted location 1 in Figure 3-4 is -55.7% Cax,hub and is where inlet pressure is measured. 

Location 2 is 107.1% Cax,hub with 5-hole L-probe of diameter 2.5mm (Figure 3-6 (a)) and 3-hole L-

probe of diameter 0.6mm (Figure 3-6 (b)) calibrated for M ranges from 0.1 to 0.95 in a semi-

open calibration rig are used for pressure measurements. While endwall pressure at 136.5% 

Cax,hub (location 3) is measured using 9 pressure taps.    

                                   

Figure  3-6 5-hole and 3-hole probes (Saha 2012) 

Pressure taps of diameter 0.4mm are placed on the NGVs surfaces at 25%, 50% and 75% 

span locations. NGV0 is equipped with 45 taps, NGV-1 with 43 taps and NGV+1 with 29 taps. The 

pneumatic pressure is measured using 2 PSI scanners (PSI 9116) with accuracy of  �0.0   of its 

full range which corresponds to  � 1.   Pa  �10 .  Pa and its value is averaged from 60 

subsequent scans. While the atmospheric pressure is measured using a Solartron barometer 

with accuracy of  �0.01  of its full range, corresponding to  �11.  Pa. The total uncertainty of 

the measured kinetic energy loss ( 𝑘𝑖   is  �0.1   and is equal to  �0.0 �  of the exit flow 

angle ( ). 

The experimental measurements obtained for comparison with CFD simulation are listed in 

Table 3-2. 

(a) 5-hole probe (b) 3-hole probe 
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Table  3-2 Vane cascade experimental data obtained 

  Exit flow 
angle 

Vorticity Total pressure 
distribution 

Aerodynamic loss 

Uncooled  √ √ √ √ 

PS1 Ynom √ -- -- √ 

 Yhi √ -- -- √ 

 Ylow √ -- -- √ 

SS1 Ynom √ -- -- √ 

 Yhi √ √ √ √ 

 Ylow √ -- -- √ 

SS2  √ -- -- √ 

SH Ynom √ -- -- √ 

 Yhi √ √ √ √ 

3.1.2. Flat plate film cooling 

The flat plate film cooling measurements were made in a large scale (30X) model in an open 

loop suction type wind tunnel (Figure 3-7). The inlet flow is sucked through the square section 

tunnel 20.32x20.32 cm and 86.36 cm in length. The mainstream passes through screens, grid 

and filters to assure uniformity and 4% intensity turbulence level. The cooling holes are 1.9 cm 

in diameter and spaced at Y/D=3 with an inclination angle of 30   with the flat plate (Figure 3-8). 

The coolant flow goes through one manifold then into three different flow meters and to 45 cm 

hose and 30 cm acrylic tube, to guarantee a fully developed flow at the hole exit as the total 

length of the flow path from the manifold and to the hole exit is twice the required entrance 

length for the higher blowing ratios (L/D   23) and is insulated. 

 

Figure  3-7 Flat plate wind tunnel schematic drawing (El-Gabry et al. 2011) 
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Figure  3-8 Flat plate film cooling holes (El-Gabry et al. 2011) 

Mainstream velocity is measured using a pitot tube at the entrance of the tunnel and the 

temperatures are measured using thermocouples. While the velocity and turbulence 

measurements are conducted using single and two-wire hotwire system. The hotwire is 

powered by constant temperature anemometry system and the data is acquired at 50Hz rate for 

3 seconds. The used hotwire system is calibrated in the wind tunnel test section with no coolant 

flow and the hotwire is positioned normal to the flow direction varying the velocity from 0 to 

45.7 m/s while recording the voltage across the wire and relating it to the measured velocity 

using 4th polynomial. 

The same procedures were followed with the two-wire (X-wire) probes, with one difference, 

that is, the wires were in position 45   with the mainstream flow direction, two X-wire probes 

were used, one to measure u & v components of velocity and fluctuations and one for u & w 

components. The uncertainty of the mean velocity measurements is 4%. 

Table 3-3 lists the experimental data obtained for comparison from the film cooled flat 

plate. 

Table  3-3 Flat plate film cooled experimental data obtained 

 
Centerline film 
cooling 
effectiveness 

Normalized flow 
velocity along 
centerline 

Normalized 
flow field temp 
along centerline 

Normalized flow velocity 
downstream of the hole 

BR1 √ √ √ -- 

BR2 √ √ √ √ 
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3.2.  Numerical analysis 

In this work a Computational Fluid Dynamics (CFD) model is used to validate the results of 

experimental measurements of flow in a NGV. CFD provides the means to analyze flow in a gas 

turbine at substantially lower cost and virtually less time than experimental measurements. In 

this work the commercially available CFD software ANSYS CFX was used. The next section is an 

introduction to CFX. 

3.2.1. Introduction to CFX 

CFX is general purpose finite element based, control volume, implicit software2 developed 
by ANSYS, Inc. It simulates the flow domain using the Reynolds Averaged Navier-Stokes (RANS) 
equations. 

It can work either integrated with the ANSYS workbench or independently. For the present 
work the latter approach was chosen and the latest version (14.5) of the software was used. 
Creating the numerical domain with ICEM software and then importing it into CFX for analysis. 

3.2.2. Governing equations 

For CFD simulations, a set of mathematical equations describing the physical problem are 

solved (governing equations). The governing equations are a mathematical description 

complying with the three basic principles of fluid dynamics. Namely: 

1- Mass is conserved. 

2- Rate of change in momentum is equal to sum of forces (Newton’s second law). 

3- Rate of change of energy equals the sum of rate of heat addition to, and work done on 

fluid particle (first law of thermodynamics). 

The RANS equations for steady-state 3-D compressible flow are listed herein. 

Continuity  

 𝑖   ̅ ̃ = 0                Eq. 3-1 

x-momentum  

 𝑖   ̅ ̃ ̃ =  
  ̅

 𝑥
  𝑖  𝜇�    � ̃ ) +[ 

   ̅�    
̅̅ ̅̅ ̅̅ ̅̅ ̅

 𝑥
 �

   ̅�     ̅̅ ̅̅ ̅̅ ̅̅ ̅̅

  
 �
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]     Eq. 3-2 

y-momentum  

 𝑖   ̅ ̃ ̃ =  
  ̅

 𝑥
  𝑖  𝜇�    � ̃ ) +[ 
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]  Eq. 3-3 

z-momentum 

  𝑖   ̅ ̃ ̃ =  
  ̅

 𝑥
  𝑖  𝜇�    � ̃ ) +[ 
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]  Eq. 3-4 

                                                           
2
 ANSYS CFX Technical Specifications 
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Energy 
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Where the overbar indicates time averaging and the tilde is a density weighted average. 

Equation of state 

 =  ̅  ̃         Eq. 3-6 

The turbulence model used in all the runs in this work is the Shear Stress Transport (SST) 

model. SST model is a 2-equation model introduced by Menter (1994) and is presented as 

having the strengths of both the k-ε and k-ω models and none of their weaknesses. On one hand 

it implements a transformation of the standard k-ε into Wilcox’s (1988) k-ω model near the 

walls (in the viscous sub-layer regime) benefiting from its merit in handling adverse pressure 

gradient, while using the standard k-ε model in the free-stream and shear-free flows to benefit 

from k-ε insensitivity to inlet turbulence properties. 

For the new model, the k-equation (Turbulence-energy equation) remains the same as in 

the original Wilcox (1988) k-ω model, which is: 

 𝑖 �     =    [  
  

  
     K ]  𝑃𝑘   ∗        Eq. 3-7 

Where 𝑃𝑘 = ( 𝜇𝑡𝑆𝑖𝑗�. 𝑆𝑖𝑗  
2

 
 K

   

 𝑥 
𝛿𝑖𝑗 �) is the rate of turbulent kinetic energy production. 

However the ε-equation (Turbulence-dissipation equation) is transformed into ω-equation by 

assuming ε= kω and becomes: 
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 𝑥 

  

 𝑥 
 Eq. 3-8 

Near wall treatment is very sensitive to grid sizing at the wall, i.e. distance between the wall 
and nearest cell node in the vertical direction. The use of wall function in the viscous sublayer 
region (Figure 3-9) is good for coarser grids, while it shows bad flow predictions for finer grids. 
Generally, two approaches of the near wall flow are used, first is wall integration, that is simply 
sizing the grid whereas maximum    doesn’t exceed 2 for k-ω model and its derivatives and as 
low as 0.2 for k-ε model. Where: 

  = 
     

 
          Eq. 3-8 

The other approach is wall function, where the log-law of the wall (Schlichting 1955) is used 
to model the flow near the wall. The advantage of this approach is being able to model the flow 



www.manaraa.com

 

23 Research methodology 

 

near the wall at relatively low grid sizes more feasible for analysis for industrial purposes. In 
order for the wall function to work correctly a    value between 30 and 150 must be kept. 

The used SST model switches between standard low-Re formulation and wall functions 
based on the grid spacing from the wall, the grids used in this work are intended to use the wall 
function by keeping    above the critical value for switching  (30) (Menter 2003) and are always 
kept below    150 (the upper bound for proper near wall solution). 

More details on the SST turbulence model are provided in appendix A. 
 

 

Figure  3-9 Turbulent Boundary Layer 
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3.2.3. Numerical domain 

The CFD grid model is created using ICEM software. The approach used in ICEM to generate 

the mesh starts by discretizing the domain into smaller volumes called blocks. A good choice of 

blocking topology helps in later local refinement of the mesh at critical points where micro-level 

phenomena crucial for proper analysis are occurring. 

3.2.3.1. Vane cascade numerical grid 

The analysis of flow in vane cascade requires relatively fine grid at critical locations such as the 

trailing edge (TE) and near the walls for endwall flows capturing. 

Figure 3-10 shows the blocking topology of the geometry in hand, as it can be seen; both the 

leading and trailing edges were given discretized blocks so that they can be more refined than 

their vicinity. 

 

Figure  3-10 ICEM blocking strategy 
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Figure  3-11 NGV numerical domain 

Figure 3-11 shows an isometric view of the NGV numerical domain after the grid is 

generated. Close up shots of the same grid are shown in Figure 3-12 and Figure 3-13. 

 

Figure  3-12 CFD grid for NGVs test section 
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Figure  3-13 Periodic vanes grid 

The boundary and initial conditions for the run setup are shown in Table 3-4. One must 

highlight here that the flow was treated as compressible fluid (air ideal gas) and second order 

advection scheme was used. 
Table  3-4 Boundary and initial conditions for the CFX solver 

Input Value 

Analysis Type Steady state 

Material Air Ideal Gas 

Reference pressure 0 kPa 

Heat Transfer Total Energy 

Turbulence model SST 

Wall function Automatic 

Inlet 
Total pressure 
Total temperature 
Turbulence intensity 

 
170 kPa 
303 K 
Medium (5%) 

Outlet 
Static pressure 

 
1 atm 

Wall boundaries 
Mass and momentum 
Wall roughness 
Heat transfer 

 
No slip wall 
Smooth wall 
Adiabatic 

Advection scheme High resolution 

Timescale control Auto timescale 
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The locations of data extraction points are shown in Figure 3-14 and the correspondent 

points are detailed in Table 3-5. 

 

Figure  3-14 Data extraction points (Saha et al. 2013) 

 

Table  3-5 Denomination and position of various locations 

Nom. Location Note 

T-Grid -264% Cax, hub Location of turbulence grid 

1 -55.7% Cax, hub Upstream traverse location 

2 107.1% Cax, hub Downstream traverse location 

3 136.5% Cax, hub Hub pressure taps 

 

Two convergence criteria were used for all the runs. First is variation level in the flow 

domain below 0.01% and second is residual mean square (RMS) less than 1E-6. 

Figure 3-15 presents the pressure variation downstream of the vane trailing edge (location 

2) at midspan plotted against normalized pitchwise location on the horizontal axis. The figure 

shows that the flow is periodic. This means that a single vane with periodic boundary conditions 

can be used in place of the four passage cascade model, thereby reducing associated 
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computational cost. The periodic model (Figure 3-16) is used for further analysis and 

computations. 

 

Figure  3-15 Total pressure at 107.1% Cax-hub and 50% span 

 

Figure  3-16 CFD grid for single vane 

A grid independence check was conducted, using exit flow angle as the checking parameter. 

This is because exit flow angle is one of the experimental measurements made that will be 

studied in this numerical investigation. Different grids are described in Table 3-6. Figure 3-17 

shows the outcome of the grid independence check; a grid of 2.4 million elements satisfies grid 

independence. 
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Table  3-6 single vane different grids 

1.8M nodes 2.4M nodes 2.9M nodes 3.4M nodes 

 

 

 

Figure  3-17 Grid independence check 
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3.2.3.2. Flat plate numerical grid 

First, a CFD complete domain was used for original simulation (Figure 3-18). A pipe of L/D = 

30 is used to feed the coolant to the flat plate surface to assure the flow is fully developed when 

it reaches the mainstream path. The grid points are shown in Figure 3-19. 

 

Figure  3-18 Flat plate with pipe CFD domain 

 

Figure  3-19 CFD grid domain 

A grid dependence check was conducted on the grid using centerline η. The different grid 

sizes used for the check are elaborated in Table 3-7. A 2.0 million nodes grid was found to 

achieve independence (Figure 3-20) complying with the same convergence criteria of the vane 

cascade runs (less than 0.01% variation in the flow domain and RMS below 1E-6). 

 



www.manaraa.com

 

31 Research methodology 

 

Table  3-7 Flat plate different grid sizes  

 

Grid size x y z 

1.7 M nodes 100 170 78 
1.8 M nodes 120 244 63 
2.0 M nodes 120 244 78 
2.3 M nodes 120 244 86 
2.4 M nodes 150 280 78 

 

 

Figure  3-20 Flat plate grid independence check 

The new approach was used for the second CFD simulation. In this case, the cooling pipe 

was spared and the coolant was intended to be fed directly at the flat plate surface. While that 

is easy to be done for one hole on the flat plate, it would be much harder to execute on the 

cooled vane. Given the number of holes needed to be modeled, the time will be taken to 

restructure and rebuild the grid with the holes will defeat the purpose of using the approach in 

the first place which is time and numerical cost reduction. 

x y 

z 
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Figure  3-21 Film cooling hole new model 

An autonomous CFD grid is built at the location of the hole. The new grid is in a way 

extrusion of the cooling hole and is one cell deep and has the same orientation of the cooling 

tube (Figure 3-22). 

 

Figure  3-22 Cooling hole extrusion 

Assigning the sides of the new grid a ‘free slip wall’ boundary condition and being very short 

in length (0.2 mm) it was fairly reasonable to assume that whatever BC was applied at the outer 

face of the domain will translate to the inner face (the hole). An assessment of that assumption 

was made by calculating the velocity at the cooling hole and it was found that a maximum 

deviation of only 8% occurred (Figure 3-23). 

 

Figure  3-23 Velocity at coolant hole exit 
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This 8% deviation of velocity effect on the results of the simulation is shown in Figure 3-24 

through a comparison of the normalized flow domain temperature contours for both new hole 

modeling approach (top) and velocity applied directly at the surface granting no deviation from 

the 9.1 m/s velocity value. It can be observed that merely any difference in the temperature 

domain is present.  

 

Figure  3-24 Normalized temperature for truncated case (up) and hole case (bottom) 

Given its potential saving of griding and computation time, the new approach was used for 

further analysis, and tested against experimental measurements of film cooled vane cascade, 

which will be discussed in details in the next chapter, to assess its validity for film cooling 

simulation. 
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4. Results and discussion 

This section discusses the results of numerical simulation and compares the outcome to 

experimental measurements. It covers all parts of the work, namely, uncooled vane cascade, flat 

plate film cooling and cooled vane cascade with different configurations, in that order. 

4.1.  Uncooled vane 
The uncooled vane analysis paves the way for cooled vane (the core of this work) and builds 

confidence in the chosen numerical models and grids. 

4.1.1. Inlet flow total pressure 

The total pressure distribution at the inlet (location 1 in Figure 3-14) presented in Figure 4-1 

shows boundary layer thickness in the order of 10% normalized span; this is in agreement with 

the experimental measurements (Saha 2012) where the boundary layer thickness was found to 

be between 8-16% span. 

 

Figure  4-1 CFD calculation of inlet boundary layer 
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4.1.2. Vane loading 

The isentropic Mach number on vane wall is an indication of the vane loading (Roux 2004), 

and is defined as 

Miso = √
2

𝑘  
   

  

  
 

   
   1         Eq. 4-1 

Where: 

P1 = Total pressure at inlet 

Ps = Static pressure at vanes outlet (136.5% of Cax-hub) 

Experiments were conducts at different Mach numbers. An operating point of 0.89 M was 

chosen for CFD analysis corresponding to a typical value of a transonic regime in nozzle guide 

vanes. The loading at midspan on the vane at Miso =0.89 is shown in Figure 4-2. Miso is plotted on 

the y-axis against the normalized axial vane location and is showing good agreement with 

experimental results. 

 

Figure  4-2 Miso at 50% span 

 

4.1.3. Exit flow angle distribution 

The exit flow angle is a measure of turning of mainstream flow downstream of the vane, the 

geometry at hand has a reference turning angle of 16.05   at mid-span, higher values of exit flow 

angles indicates lower turning, and lower values indicates higher turning.  
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Figure  4-3 Uncooled (Reference) vane exit flow angle 

Figure 4-3 shows exit flow angle experimental measurements and CFD calculations of the 

author and that of Mitrus (2012). In her work Mitrus (2012) used the same geometry and 

boundary conditions as the author. The only difference in this work and that of Mitrus’s is the 

numerical grid. The exit flow angle (x-axis) is plotted against normalized spanwise location (y-

axis). The flow –driven by endwall flows- tends to turn less in the endwall regions with large 

deviation at the outer bounds of the BL region (around 15% spanwise location). The present CFD 

simulation was able to capture the experimental values well within the 0.6˚ measurements 

uncertainty except for some deviation near the endwalls (0-5% and 90-100% spanwise location). 

Endwalls are specially challenging for CFD simulation to model for the adverse pressure gradient 

of boundary layer at them. 

4.1.4. Vorticity and total pressure distribution 

One very distinctive flow phenomena associated with flow in vanes is vortices. The axial 
component of vorticity    is calculated as: 

  =
  

  
 �

  

  
          Eq. 4-2 

Figure 4-4 is a representation of the vortex structure at vane exit (107.1% Cax,hub). The CFD 
simulation (b) was able to capture the main features of the vortex structure measured in the 
experiment (a). The TE shed vortex extends from 15% to 90% normalized spanwise location. The 
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corner and passage vortices were located at the correct spanwise location although with much 
smaller value than the experimental. On the other hand, an over prediction of the horseshoe 
vortex is evident. 

 

 
Figure  4-4 Ref. case vorticity at 107.1% Cax,hub 
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CV 
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To trace how the vortex structure at the TE is formed, a series of planes of the vortex are 

shown in Figure 4-5 at different stations in the passage. The vortex is scaled from -5000     

(blue) to 5000     (red) just like Figure 4-4. The plots show how the flow starts to roll away from 

endwalls at passage entrance. Two opposing flows are colliding here, one is the endwall moving 

from pressure to suction side by mean of pressure gradient, while a flow separated at LE is 

impelling in the opposite direction on the suction side. 

 

Figure  4-5 Vortex formation and evolution in vane passage 

Figure 4-6 shows that opposing effect. Taken at LE, the separation (and springing of HS 

vortex) is dominant and can be seen clearly in the arrows repelled from blade SS. And it always 

flow away from endwalls and into profile, it has positive sense of rotation at casing and negative 

rotation at hub. 

The previously mentioned opposing flows are better emphasized in Figure 4-7. 
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Figure  4-6 Vortex structure at LE 

 

Figure  4-7 Vortex upstream at casing 
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A measure of the total pressure loss is the total pressure coefficient Cp which is defined as: 

𝐶 =�
       �  

      
         Eq. 4-3 

The total pressure coefficient contours of the CFD simulation and experimental 

measurements show in Figure 4-8 highlights the agreement of the CFD simulation to the 

experimental measurements.  

 

Figure  4-8 Total pressure coefficient 
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The total pressure coefficient shows correspondent behavior to the exit flow angle variation, 

as Cp increases with decrease of the total pressure downstream of the vane, an increase in the 

flow turning accompanies it indicating higher intensity evident of the of the passage vortex, and 

vice versa. It is obvious that virtually no pressure drop occurs in the vane passage, and the all of 

the loss can be seen between -0.05 and 0.15 normalized pitchwise locations, influenced by the 

trailing edge (TE) shed vortex downstream of the TE, with an increase of the loss value at 

endwalls specially at the casing, caused by the secondary flows. 

4.1.5. Aerodynamic loss 

The aerodynamic loss is the flow parameter that interprets all flow phenomena in the vane 

passages. The design criterion of vane profile is maximum lift (which is interpreted into work) at 

minimum drag (loss). The loss has many definitions; in this study a definition of the K.E. loss is 

chosen which is defined as: 

 �=�
  𝑡   � 𝑥𝑖𝑡� . .

    𝑡   𝑖 � . .  �  𝑖  𝑡    
        Eq. 4-4   

 �=��
(
   
  

)

   
  �(

   
  

)

   
 

  (
   
  

)

   
 

              Eq. 4-5 

 

Figure  4-9 Normalized mass averaged kinetic energy loss at 107.1% Cax,hub 
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The mass averaged normalized KE loss is shown in Figure 4-9 at different spanwise location 

and is showing good agreement of the CFD simulation with the experimental measurements. 

The value is normalized by the KE loss average at midspan (40:60% normalized spanwise 

location). It is evident that the KE loss curve is asymmetric around midspan, i.e. showing 

different behavior at hub and casing. From the KE loss equation (Eq. 4-5) the driving variable is 

the static pressure, looking at the average static pressure distribution in the spanwise location  

This is due difference in the static pressure is higher at casing than hub as it can be seen in 

Figure 4-10. 

 

 
Figure  4-10 Mass averaged static pressure trend line at 107.1% Cax,hub 

This occurrence is explained by the equation: 
  

  
= � 

  

 
            Eq. 4-6 

It elaborates how the flow in a between two curves surfaces tends to move away from the 

convex and towards the concave surface. Due to lower flow velocity at the larger radius of 

curvature surface (casing in this case) results in a higher pressure at the location and the 

opposite goes for the smaller radius of curvature surface (hub). 
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Povey et al. (2007) have shown that effect in their work, Figure 4-11 is their illustration of 

the flow development through vane passage. 

 

 
Figure  4-11 Flow development in vane passage (Povey et al. 2007) 

 

The CFD simulation of the uncooled (reference) vane has shown consistent agreement with 

the experimental measurements, supporting its validity for use in latter stages of the research –

cooled vane-. However, before proceeding with the cooled vane, a simplified analogues problem 

will be solved. The next section will discuss the results of CFD simulation of flat plate film cooling 

and compare it to experimental measurements from El-Gabry et al. (2011) and Thurman et al. 

(2011). 
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4.2.  Flat plate film cooling 
This work is objected towards validating a new approach in modeling film cooling for gas 

turbines analysis applications. As a step towards that, a simple problem is addressed to make a 

preliminary assessment of the used technique. Flat plate film cooling is a famous problem in the 

literature used to simulate the jet in cross flow situation. Experimental data from El-Gabry et al. 

(2011) and Thurman et al. (2011) was used to validate the new modeling technique. 

4.2.1. Normalized flow velocity 

For both CFD-tube and truncated, two runs were made, one for high blowing ratio (BR = 2) 

and one for low blowing ratio (BR = 1). Mainstream velocity is 9.1 m/s and constant speed 

(oriented at 30   with the flat plate) was applied at the hole. Figure 4-12 is the flow velocity in 

the mainstream direction (u) normalized by the mainstream velocity (9.1 m/s) for BR =1 and BR 

= 2. Both the horizontal and vertical axes are normalized by the cooling hole diameter.  

 
Figure  4-12 u-velocity normalized contours (BR=1 and BR=2) 

The CFD run with coolant tube looks more similar to the experimental measurements; a 

distinctive coherence of the coolant flow is obvious, especially at its wake, on the contrary, in 

the run with no tube, the coolant flow loses intensity near the wake and showing more diffusive 

behavior than experiment. And the same trend is observed for the high blowing ratio (BR=2). 

(b) BR=2 (a) BR=1 

EXPERIMENTAL (El-Gabry et al. 2011) 

CFD-tube 

CFD-truncated 
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Figure 4-13 is a representation of the normalized temperature (theta) contours for BR=1 and 

2, where theta is calculated as: 

  = 
   � �

   �  �
            Eq. 4-7 

Where: 

   : Mainstream temperature = 295 K 

T: Temperature 

   : Coolant temperature at hole exit = 273 K 

4.2.2. Flow field  temperature along centerline 

Qualitatively, both CFD tube and truncated are within the measured experimental values of 

θ for both BR=1 and BR=2. With one major difference in the low BR, that is, the thermal bound 

of the coolant seem to be higher than experimental. In the experiments, the coolant effect on 

the mainstream temperature barley touches Z/D = 1.5. While in the CFD simulation (both case1 

and case2) the coolant effect can be well observed beyond the Z/D = 1.5 limit. However the 

same is not true for the higher BR. In which calculated θ from CFD is at Z/D = 2.5 just like 

experimental measurements. Yet on the other hand, an over prediction of the coherence of θ is 

evident for both case1 and case2. Suggesting more penetration of the coolant jet, causing the 

jet to be more detached from the surface than experiments. As a direct result of the previous, 

the mainstream entrainment in the wake of the jet occurred. 
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Figure  4-13 Theta contours (BR=1 and BR=2) 

The contours of θ for BR=1 shown in Figure 4-14 highlight both the previously noted higher 

excessive penetration and mainstream entrainment in the jet wake. The excessive penetration is 

evident in the traversed contour levels, while the higher value contour level (0.7) in the jet wake 

is caused by mainstream penetration of the coolant jet. While deviated from the experimental 

measurements, both case1 and case2 remain similar, suggesting no merit of solving the flow in 

the coolant pipe. An isometric view of the ‘0.7’ contour level is shown in Figure 4-15 showing 

how the mainstream penetrates through the coolant jet. 

Experimental (Thurman et al. 2011) 

CFD-tube 

CFD-case 2 

(a) BR=1 (b) BR=2 

CFD-truncated 
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Figure  4-14 Theta contours (BR=1) 

 

Figure  4-15 Mainstream entrainment in the coolant jet wake 

Experimental (Thurman et al. 2011) 

CFD-truncated 

CFD-tube 
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The higher BR cases behave similar to the lower BR cases. With the excessive coolant 

penetration present while the mainstream penetration in the coolant jet wake was absent in the 

CFD-tube.  

 
Figure  4-16 Theta contours (BR=2) 

4.2.3. Film cooling effectiveness 

Film cooling effectiveness (η) is (as the name suggests) a parameter used to judge on the 
effectiveness of applying film cooling on a surface. Where: 
 

  = 
   �   ��

   �  �
            Eq. 4-8 

 
It provides quantitatively an assessment of the effect of film cooling on reducing the 
temperature of the targeted wall. While heat transfer between fluid and the cooled surface is 
out of the scope of this work. One finds it appropriate to mention all the findings of the analysis 
at each phase of research. 
 

Experimental (Thurman et al. 2011) 

CFD-tube 

CFD-truncated 
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Figure  4-17 η at centerline downstream of the coolant hole (BR=1) 

In the η chart (Figure 4-17) at centerline of the cooling hole and downstream of it for 
experimental and CFD tube and truncated, a direct effect of the excessive calculation of coolant 
penetration is observed in the lowered value of η close to the hole exit. As the coolant moves 
further downstream, it reattaches to the plate surface increasing η and bringing the CFD 
simulation close to the experimental measurements. 

 
Figure  4-18 η at centerline downstream of the coolant hole (BR=2) 
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On the other hand for higher BR, the coolant jet doesn’t reattach (Figure 4-18), leading to 

less accurate calculation of η all the way downstream. However, far downstream of the hole 

exit, both CFD cases coincide on each other. Supporting the previously reached conclusion that 

modeling the flow in the pipe doesn’t provide any advantage over sparing it and applying a 

velocity BC directly at the hole surface. 

To investigate that more in depth, looking at the jet from downstream (Figure 4-19) it is 

noted that starting at X/D = 6 both CFD-tube and CFD-truncated are similar with mere slight 

difference. Also it is noted that both CFD approached did capture the famous kidney vortex 

associated with jet in cross flow injection formed downstream of the cooling hole. 

 

 

Figure  4-19 Normalized u-velocity downstream cooling hole 

 

Experimental (El-Gabry et al. 2011) 

CFD-tube 

CFD-truncated 
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4.3.  Cooled vane 

The cooled vane numerical simulation is presented for two configurations. Configuration 1 is 

at 3 different locations, 2 on the suction side and one on the pressure side, with one of the 

suction side location and pressure side are analyzed at 3 different BR. Configuration 2 is 

showerhead cooling for 2 BR cases. 

4.3.1. Configuration 1 (Pressure side and suction side) 

The third phase of this work is the numerical simulation of partially cooled vane. The same 
vane geometry from section 4.1 was used and coolant flow was applied at three different 
locations as highlighted in Figure 4-20. 
 

 
Figure  4-20 Film cooling holes locations (Saha et al. 2013) 

Two of the cooling locations are on the suction side (SS1 and SS2) and one on the pressure 
side (PS1). Both SS1 and SS2 locations has two rows of cooling holes, while PS1 has only one 
row. The correspondent specifications of the cooling holes are listed in Table 4-1. The holes 
angles are measured from tangent to the vane surface at the hole exit.  

Table  4-1 Cooling holes geometrical information (Saha et al. 2013) 

Row X/Cax Angle [ ] No. of holes 

PS1 77% 142.8 23 

SS1 19%, 23% 50.9, 59.3 24 and 23 

SS2 50%, 52% 42.3, 38.9 23 and 22 

 

The same approach previously described in introducing the coolant flow into the domain for 

the flat plate was used. Figure 4-21 shows coolant holes connection to the vane surface. 
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Figure  4-21 Film cooling holes 

A set of runs for different BR for both PS1 and SS1 cooling locations were conducted 

according to Table 4-2. One is nominal mass flux ratio (Y), one low and one high. While for SS2 

cooling location only one nominal case was run. 

Table  4-2 Cooled (configuration 1) runs matrix 

 Mass-flux ratio (Y) Blowing Ratio (BR) Pressure ratio (Pm/Pc) 

Ref. (uncooled) 0 - - 

PS1 Ynom = 0.35% 0.96 1.02 

Ylow  = 0.29% 0.8 1.04 

Yhigh = 0.91% 2.5 0.806 

SS1 Ynom = 1.04% 1.4 0.86 

Ylow  = 0.59% 0.8 1.02 

Yhigh = 1.85% 2.5 0.61 

SS2 Ynom = 0.81% 0.8 0.95 

 

The film cooling is parameterized by blowing ratio (BR) which is defined as: 

BR = 
    

    
          Eq. 4-9 

Whereas in this analysis both coolant and mainstream flows have same density, the blowing 
ration becomes: 

BR = 
  

  
                        Eq. 4-10 

In the experiments, it is hard to measure accurately the flow velocity at the hole exits for 
both mainstream and coolant flows, hence a different parameter was used to identify different 
runs. Mass-flux ratio or ‘Y’ is calculated from the mass flow ratio between coolant and 
mainstream, hence from equation 4-9: 

BR = 
    

    
 = 

  

  
 
   

   
 = 

  

  
                       Eq. 4-11 
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The same parameters used to validate the uncooled vane CFD simulation will be used for 
the cooled cases, namely, exit flow angle, vorticity, total pressure distribution and aerodynamic 
loss. A new definition of aerodynamic loss will be introduced that accounts for the KE added due 
to cooling application. 

4.3.1.1. Exit flow angle distribution 

Exit flow angle is ideally determined by the blade orientation angle (16.05  for this vane). 

Although that’s the case is for ideal flow, in face, flow in vane passage is far from being perfect. 

The plots in Figure 4-22 are the data at TE plane, the vertical axes is the normalized spanwise 

location while the horizontal axes is the exit pitch-averaged exit flow angle. It can be seen that in 

region 30-70% spanwise location, the exit flow angle is roughly equal to the reference angle 

(16.05 ), yet in the endwall regions, the flow tends to turn driven by endwall and secondary 

flows. 

It can be concluded from the plots that introducing the cooling for all the cases (PS1, SS1 

and SS2) didn’t have significant effect on the flow. This is due to the relatively low flow rate of 

coolant compared to mainstream. Coolant mass flow rate ranges from 0.29% to 1.85% of the 

mainstream flow. 

   

 

Figure  4-22 Pitch-averaged exit flow angle (Experimental data from Saha et al. 2013) 
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    The CFD calculation of the exit flow angles was able to capture the measured experimental 

values accurately for all the cases (within the measurement uncertainty of 0.6˚) especially 

outside the endwalls regions. 

4.3.1.2. Vorticity and total pressure distribution 

Same definition of vorticity mentioned before was used (Eq. 4-2). It can be noted from 
Figure 4-23 the interruption in the TE shed vortex at 28% span location compared to uncooled 
case (Figure 4-4) due to application of coolant, while same main structure of the vortex remain 
intact, namely, HS, PV and CV. 

 
Figure  4-23 SS1 high BR case vorticity at 107.1% Cax,hub downstream                                           
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Total pressure coefficient (Cp) offers a good estimate of the overall loss through the passage 

by comparing change in total pressure at exit from the total inlet pressure.  

 

Figure  4-24 Total pressure distribution, SS1 Yhigh case 

Contours of the total pressure coefficient at 107.1% Cax,hub for SS1 high BR cases comparing 

experimental and CFD results is shown in Figure 4-24. The uncooled case has the highest Cp 

values near the endwalls and the wake of the TE. The same goes for the SS1 high BR case, 

however, a strong decrease at 28% span location is noted influenced by the counter rotating 

vortex mentioned before. The CFD is showing similar interruption but at much less value and 
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also under predicting the loss at endwalls. This might be caused by under estimation of 

mixedness of coolant flow with mainstream. Hypothetically, an unmixed coolant flow would 

increase the total pressure of the mainstream flow leading to decrease in the Cp loss and maybe 

even gain in total pressure (negative loss) in some extreme cases. Hence another measure of the 

loss that is formulated with the account for coolant flow is used in the next section to assess 

aerodynamic loss. 

4.3.1.3. Aerodynamic loss 

The KE loss coefficient used in section 4.1.1 is used here and a new one with some 

modifications is introduced. The previous definition will be referred to here as primary 

(subscript pr) while the new proposed coefficient will be pointed out as just ζ and is defined as: 

ζ = 1  �
  𝑡   � 𝑥𝑖𝑡� . .

    𝑡   𝑖 � . .  �  𝑖  𝑡         𝑡   𝑖 �  �  �      𝑡
 

This translates into: 

ζ=  1  �
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                         Eq. 4-12 

Figure 4-25 (a) is the value for the mass normalized mass averaged primary loss for all the 

cases at nominal BR (on the horizontal axis) plotted against normalized span location (the 

vertical axis). The primary loss is averaged with the loss between 40-60% of the reference case. 

Analogous to the exit flow angle, KE loss shows only a small variation from the reference case –if 

any-. In Figure 4-25 (b) though, SS1 high BR have strong local variation at 28% span, 

corresponding to the previously observed vortex at the location. The CFD results show the 

correct trends and reasonable values for all the cases. With the same previous observation of 

the deviation at the casing, and the author believe it is due to the same reason. 
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Figure  4-25 Normalized reference primary loss, different cooled cases (Experimental data from Saha et al. 2013) 

 

The normalized KE loss in Figure 4-26 has the same trend of the primary loss, and the CFD 
simulation is showing agreement with the experimental measurements for all the cases (again, 
except for the casing endwall region). The suction side cooling is showing more loss penalty than 
the pressure side cooling (Figure 4-26 (a)). Also the effect of increasing BR on the loss is clearer 
in the SS1 case (Figure 4-26 (b)). Its significance increase for that case –more than PS1 case for 
instance- probably due to the higher mass flux ratio. This highlights the fact that the role played 
on the aerodynamic loss by film cooling parameters is not exclusive to BR, but also Y plays a 
role. 
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Figure  4-26 Normalized KE loss, differnet cooled cases (Experimental data from Saha et al. 2013) 
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4.3.2. Configuration 2 (Showerhead) 

Leading edge is the part subjected to highest thermal loads caused by highest heat transfer 

coefficients as an effect of the stagnant flow on it. Hence, sufficient cooling is required at the LE 

to account for this higher than usual thermal loads. Showerhead cooling is achieved by 

introducing closely positioned rows of cooling holes. This close arrangement of the holes is 

expected to cause more interaction between different holes flow and tends to show more 

influence on the mainstream flow than suction and pressure side cooling. 

The shape of the surface where the coolant is being injected plays a significant role on the 

film cooling performance. For instance, in case of injection on a convex surface (such as the 

leading edge), if the jet has less momentum than the mainstream, its radius of curvature would 

be less than that of the surface, which is translated into the jet is being pushed towards the 

surface improving η. And the opposite is true, if the momentum of the injected flow is higher 

than that of the mainstream, the injected flow would has larger radius of curvature detaching it 

from the surface and resulting in less η. 

 

Figure  4-27 Showerhead cooling locations 

Showerhead film cooling was analyzed for two different BR in this section. Figure 4-27 

shows the location and arrangement of the 6 rows of coolant holes and Table 4-3 shows the 

correspondent geometrical features. Again the hole angles were measured from a tangent to 

the surface at hole exit. 

Table  4-3 Showerhead cooling holes geometrical features 

Row x/cax Angle [°] No. of holes 

SH1 3.30% 123.3 26 

SH2 0.89% 105.4 25 

SH3 0% 80.4 26 

SH4 0.77% 66.9 26 

SH5 3.40% 53 25 

SH6 9.10% 46.33 11 
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Two runs were made, one at low Y and one at high Y according to Table 4-4. As expected, 

the BR varied for each row at the same Y because, this is due to the fact that the mainstream 

velocity is different at local locations of rows. For instance, for Ynom row1 has BR = 5.84, while 

row2 has BR = 8.42. A change of 44% for the row in its vicinity, highlighting the severe change of 

flow conditions around the cylindrical blunt body the LE represents for the flow. The rest of the 

BR values for different rows are as follows: row3 = 4.4, row4 = 3.05, row5 = 2.3 and row6 = 1.98. 

Table  4-4 Showerhead cooling flow conditions 

Mass-flux ratio (Y) Pressure ratio (Pm/Pc) 

Ynom = 1.88% 0.93 

Yhigh = 2.35% 0.89 

The CFD calculations are compared to experimental measurements from Saha et al. (2014) 

4.3.2.1. Exit flow angle distribution 

The exit flow angle for SH cooled vane for the two BR is shown in Figure 4-28. The same 

behavior noted before of strong deviation of the flow direction occurs in the endwalls regions. 

Another important note is that in face applying cooling virtually didn’t change the exit flow angle 

for any of the investigated cases (PS1, SS1, SS2 and LE) and at any BR. This is due to the minor 

effect of film cooling application on the big bulk of the flow, i.e. the low mass-flux of the coolant 

compared to the mainstream merely promulgate any change in the flow direction compared to 

for instance the noted severe deviation caused by endwall flow in the endwalls regions. 

      

Figure  4-28 α for SH cooling at various Y, 107.1% Cax,hub (Experimental data from Saha et al. 2014) 
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4.3.2.2. Vorticity and total pressure distribution 

A new definition of the total pressure coefficinet (Cp) was used at this stage of the analysis, 

that is: 

𝐶 =�
  

      
                       Eq. 4-13 

The total pressure downstream of the vane for the SH cooled case (Figure 4-30) looks fairly 

similar to the uncooled case (Figure 4-29). This supports what was previously mentioned about 

the total pressure coefficient probability of being a deciving parameter for loss assessment. 

 

Figure  4-29 Total pressure coefficient reference case, 107.1% Cax,hub 
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The unmixedeness of coolant in CFD simulation is clear in this case as well. The casing 

endwall region is showing much less loss in total pressure, as the unmixed coolant flow doesn’t 

impose a penalty on the total pressure and hence less drop than what’s actually occuring can be 

seen in it. 

 

Figure  4-30 Total pressure coefficient SH cooled case Yhigh, 107.1% Cax,hub 



www.manaraa.com

 

63 Results and discussion 

 

The vorticity downstream of the vane for the SH cooled case at Yhigh is shown in Figure 4-31 

and an interruption of the TE shed vortex can be seen around 30% spanwise location, caused by 

film cooling injection unlike the reference case (Figure 4-4) where the shed vortex is continuos 

throughoout the span. 

 

Figure  4-31 Vorticity at TE for SH cooled case at Yhigh 
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The mentioned intrruption can be traced all the way to its origin (coolant injected) in 

Figure 4-32. The origing and propagation of a clockwise rotating vortex can be seen in the black 

circles. 

 

Figure  4-32 Showerhead Yhigh PS vortex structure 

Figure 4-33 shows similar formation of vortices of alternating sense of rotation, however, it 

mixes with the mainstream very fast and decay, leaving no trace in the flow domain 

downstream. 

 

Figure  4-33 Showerhead Yhigh SS vortex structure 
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4.3.2.3. Aerodynamic loss 

In the primary loss measured (Figure 4-34), the effect of film cooling injection is fairly small, 

mainly due to the definition of the primary loss that doesn’t accout for the coolant injection. 

 

Figure  4-34 Normalized     for SH cooling at various Y, 107.1% Cax,hub (Experimental data from Saha et al. 2014) 

While a rise in the KE loss was promoted by SH film cooling for both BR invistigated. 

Figure 4-34 shows an increase of about 25% in the loss. The KE loss in the plot is normalized by 

the KE loss of the reference case between 40-60% spanwise location. The higher Y case has 

more influence on the losss than the lower Y case as one would expect. 

 

Figure  4-35 Normalized   for SH cooling at various Y, 107.1% Cax,hub (Experimental data from Saha et al. 2014) 
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5. Conclusion and future work 
A CFD analysis of an annular sector cascade at an isentropic Mach number of 0.89 was 

carried out using ANSYS CFX solver. Preliminary, the simulation was performed on an uncooled 
vane. The CFD simulation was able to capture key features of the flow in the vane passage 
compared to experimental measurements, namely, exit flow angle, vortex formation, total 
pressure distribution and aerodynamic loss. Then a study case for film cooling was conducted on 
a flat plate and a new approach of introducing the coolant into the domain was used, 
eliminating the need to geometrically model the physical coolant plenum and tube. In this 
approach, the coolant is applied as boundary condition at the hole location directly at the 
surface. CFD results were compared to experimental measurements; the simulation obtained 
the correct trends of the centerline film cooling effectiveness and was able to predict flow field 
velocities and temperatures with considerable success for both approaches (full domain and 
coolant tube removed domain). The new approach was then implemented into the vane to 
mimic several film cooled vane experimental cases. Coolant was introduced at suction side, 
pressure side and showerhead cooling holes at different blowing ratios. Comparisons are made 
for the same flow features as the uncooled case: exit flow angle, vorticity, total pressure 
distribution and aerodynamic loss. The new approach showed results comparable to 
experimental measurements for most conditions. 

The new approach was found to achieve 20% reduction in grid size in the flat plate –single 
hole- film cooling and when implemented for the cooled vane cascade, it kept the grid size 
almost equal to the uncooled vane (2.4 million nodes) versus a grid size of 6.8 million nodes 
when the coolant holes were modeled discreetly (180% saving in grid size), resulting in saving of 
300% in computing time (when run on a 16GB RAM, 6MB cache Intel i7 core® processor 
computer). 

A recommendation for the next steps is to carry out heat transfer experiments for the 
cooled vane, using different temperatures for the mainstream and the coolant to study the 
thermal performance as well as the aero. This will help conclude on the validity of the new 
approach of film cooling application in film cooling design in real engines. Additional data on the 
surface of the vane would also be a useful next step in order to compare adiabatic film 
effectiveness and heat transfer coefficient resulting from the film cooling. 
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Appendices 

Appendix A 

SST turbulence model 

In CFD analysis, and for turbulent flows, turbulent is modeled rather than solved, i.e. due to 

the very complicated flow features of turbulence, caused by its spatial and time variation. It is 

not feasible to actually solve for turbulence. The turbulence model used for numerical 

simulation throughout this work is Menter (1994) SST model. It is a modification of Wilcox 

(1988) k-𝜔 model. 

The model implements a blending factor (F) to calculate constants based on k-ω and k-ε models, 

the new constants are calculated as: 

 =�      1      2 

Where 

   is any constant in the k-ω model 

 2 is any constant in the k- ε model 

And   is the constant in the new modified model 

 

The blended constants are 
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